

Starting remarks

Agenda

IV ENAVAV S

X

Timers/counters Interrupts Pulse width modulation Analog to digital USART
converter

Task 1 Task 2 Task 3

Timers/counters — In general

Basically, like a plain
stopwatch on your phone

Timers/counters — In general

Why do we care?

Timers/counters — In general

L

==

Timers/counters — In general

Okey
dokey

@) LLLLL]

1/

Timers/counters — In general

Timers/counters — In general

I’'ve finished
counting
chief

@) LLLLL]

1/

Timers/counters — In practice

We have multiple timers/counter on the Atmega4809:
Timer A| «—— We will use this one

Timer B

We need to tell the timer/counter what value to count to (in practice
how many clock cycles)

We need to tell how quickly the timer should count, with a prescaler

Timers/counters — Prescalers

Prescalers determine the clock frequency of the _ frequencymicocontrotier

. requUency imer =
timer/counter frequencyimer prescaler

Example

We set the prescaler to 2 so that the timer counts twice as slow as the microcontroller frequency

Timers/counters — Prescalers

S

==

Timers/counters — Prescalers

Okey
dokey

@) LLLLL]

1/

Timers/counters — Prescalers

Timers/counters — Prescalers

I’'ve finished
counting
chief

@) LLLLL]

1/

Timers/counters — Registers

20.5.15 Period Register - Normal Mode

TCAN.PER contains the 16-bit TOP value in the timer/counter in all modes of operation, except Frequency Waveform
Generation (FRQ).

The TCAn.PERL and TCAn.PERH register pair represents the 16-bit value, TCAn.PER. The low byte [7:0] (suffix L)
is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01

We need to tell the timer/counter what value to count to W s e e .

RW RW RW RW RW RW RW

(in practice how many clock cycles) P T &y oo oo

6 5 4 3 2 1 0

Access RW RW RW RW RW RW RW RW
Reset 1 1 1 1 1

Bits 15:8 — PER[15:8] Periodic High Byte
These bits hold the MSB of the 16-bit Period register.

TCAO . S I N G L E . P E R = Som e_ Value; Bits 7:0 - PER[7:0] Periodic Low Byte
l_Y_J l_‘_J These bits hold the LSB of the 16-bit Period register.
The We're The

timer we intereste register
wantto dinthe holding

use timer the value
running the
insingle timer
mode will

count to

Timers/counters — Registers

We need to tell how quickly the timer should count, with V= oo

a prescaler S

2 1 0
N I — CIRSELE)

TCAO.SINGLE.CTRLA |= TCA_SINGLE_CLKSEL_DIV2_gc; T

x DIV1 frea = feik pi
— Y Y Y DIV2 froa= oo pen®
DIv4 frea = ferk per4
. " o o Dive frea = f /8
The We're Register Use bitwise or and pass in the group mask for owe frca = fou pen16
q n . q frea = fork per/64
timer we intereste holding setting the prescaler to 2 DIV256 frca = foux per256
tt d i th the DIv1024 frea = feuk_per/1024
Wa n O In e Bit 0 - ENABLE Enable
i Ve —“Description ____ |
use tlmer prescaler The peripheral is disabled
run n|n g 1 The peripheral is enabled
in single
mode

We also need to enable the timer

TCAO.SINGLE.CTRLA |= TCA_SINGLE_ENABLE_bm;

Timers/counters — Single?

TCAO.SINGLE.CTRLA |= TCA_SINGLE_CLKSEL_DIV2_gc;
l_‘_l

What is
this?

The timer can run in single (16-bit) or split (two 8-bit)

Single NYellls
[.) [A 5
Can count to Can count to
Can count to 65 535 255 (the 255 (the
maximum maximum

(the maximum value
of a 16-bit number)

value of an 8- value of an 8-
bit number) bit number)

Timers/counters

Questions?

Interrupts — In general

Basically, like a notification
on your phone

Interrupts — In general

Why do we care?

Interrupts — What are they?

Code blocks executed at some condition

Stops the main program flow
temporarily, resumes immediately after
the interrupt

Interrupts — Example

AN

=] — "O — =
ISR = The
Interrupt jnterrypt
service vector
routine name
/N e
int main() { ISR (TCAO_OVF_vect) { int main() {
// Do something when the timer has
while (true) { // finished counting to the value while (true) {
// Doing some // Doing some
// work here // Tell the timer that we’ve received the // work here
// More code... // notification (acknowledge the interrupt) // More code...
} TCA.SINGLE.INTFLAGS = TCA_SINGLE_OVF_bm; }
} } }

Interrupts — How do we configure these
things?

We must enable interrupts globally. Done by calling sei();

20.5.10 Interrupt Control Register - Normal Mode

Name: INTCTRL
Offset: 0x0A
Reset: 0x00

We must enable the corresponding interrupt bit for the module
We Want interrupts from gietesc—r\fpng,"z Compare Channel 2 Interrupt Enable

Bit 5 - CMP1 Compare Channel 1 Interrupt Enable
See CMPO.

Bit 4 - CMP0 Compare Channel 0 Interrupt Enable
Writing the CMPn bit to 1’ enables the interrupt from Compare Channel n.

Bit 0 = OVF Timer Overflow/Underflow Interrupt Enable
Writing the OVF bit to ‘1" enables the overflow/underflow interrupt.

We must include the code for the interrupt service routing with SR (TCA})/—;\;FEVCTJCJ)G{

the correct interrupt vector name TCA.SINGLE.INTFLAGS = TCA_SINGLE_OVF_bm;

Interrupts — Closing remarks

Keep them short

Interrupts are in most cases a better solution to your
problem than using polling

Interrupts

Questions?

IV ENAVAV S

TX
Timers/counters Interrupts Pulse width modulation Analog signals USART

Task 1 Task 2 Task 3

g

PWM

Demo

PWM — In general

A signal where we can vary how long the
signal is low compared to high

[(6=1.00686KHz |
e rurrrvr
0s5:0.08ps 12-04-20 12:59:30

PWM — In general

Why do we care?

[(6=1.00686KHz |
CHI= 188U CHZ= 2.060 Mzseps CHL 7368mU
M Pos.00ps 12-84-20 12:53:30

PWM — With the timer/counter modules

We can make the timers/counters output a PWM signal on a pin

»

Count

———————————— Period value (PER register)

_ Z__ R Z _____________ Compare value (CMP register)

AN
N\

Time

PWM
signal

PWM period

PWM — With the timer/counter modules

We want to output a PWM signal on two pins for this task

* We need to use split mode for the timer (every register should be on
the form of TCAO.SPLIT.<register> = some_value;)

* We then have two compare values (CMP1 and CMP2)

We need to tell the microcontroller what pins it should output the PWM
signal on
* We need to use port multiplexing

Hey, these pins are
should be dedicated to

the timer
[Q\\

i

PWM — With the timer/counter modules

We want to output a PWM signal on two pins for this task

* We need to use split mode for the timer (every register should be on
the form of TCAO.SPLIT.<register> = some_value;)

 We then have two compare values (CMP1 and CMP2)

We need to tell the microcontroller what pins it should output the PWM
signal on
 We need to use port multiplexing

No problem, I'll set it

s
M

i

PWM — Closing remarks

This is a task people usually struggle

with, so read the comments in your
handed out code thoroughly. It will
point you in the correct direction.

PWM

Questions?

IV ENAVAV S

X

Timers/counters Interrupts Pulse width modulation Analog to digital USART
converter

Task 1 Task 2 Task 3

Vv Vv

Analog to digital converter — In general /\/\/

Demo

Analog to digital converter — In general /\/\/

Converts analog signals to
digital values

Analog to digital converter — In general /\/\/

Digital value of 1023 for a 10-bit ADC (A 10-bit
Signal number can store up to 1024 different values)

5V +

Analog to digital converter — In general /\/\/

Why do we care?

Analog to digital converter — What we
need to setup

Analog
3.3V| 1
1. Set bit resolution (10 bits in this task)
2. Set the number of samples per conversion
oV

3. Set the reference voltage
4. Set the prescaler (how fast the ADC will run and thus
sample signal)

5. Enable the ADC

Analog to digital converter — How we

oet a sample

NG
A
GA4S

NANO
PINU

ID

1. Choose which ADC channel to use c
@NZEDI pecl
. @7 beG2
2. Start a conversion :

3. Wait for it to complete WosT

4. Read the value

-

-e:
@3

DBG3
DBGO
GND

GND

o vfaJ T " U U U U U T
z
4 S P S N G

AVAV.

The ADC
has 8
channels

Analog to digital converter - Closing
remarks

All the steps outlined are
commented in the code with
the datasheet sections. Ask us
you have any questions

Analog to digital converter

Questions?

USART

A way to send and receive
data

Universal Synchronous and
Asynchronous Receiver and
Transmitter

R

X

i

X

USART

B

USART

B

USART

B

USART

What about
9600 bits/s

R

X

i

X

USART

B

USART

B

USART

You there?

Yeah, cool

beans

R

X

i

X

USART

Why do we care?

R

X

i

X

USART — Configurations

* Need to specify baud rate

* Need to specify bits per transfer (usually 8, so 1 byte
per transfer).

* There are some more configurations as well, but we

won’t go into them (we’ll use the default values)

R

T

X

i

X

USART — How do we set it up?

1. Need to enable the TX pin for output (and optionally

CURIOSITY
NANO
)

|

ID

DBG1
DBG2

GND

USART
pins we're o
. . going to =
the RX pin for input). Cse
2. Need to set the baudrate (bits per second) in the
USART’s BAUD register. Both sides need to have the -
same baudrate.

3. Enable transmitter (and optionally receiver) for the
USART module (in the CTRLB register of the USART

module).

GND

® -~ 0
-7 e
-®: o
o . io-
-»' -
B

1 I 0=
-®: S
-®: o=
-®: 1=
-®: e
-9: e
-®: o
-®: 18-
-®: ‘e
- T e
-®? 1=
-®: o=
@7 0=
e 2@
-®: 0=
-®: @ 10
-®: i@
-@: T
-9 1=
~®t e
xE 1=
-®: R’ i@=
-®7 SWo i@
® ® 0

DBG3
DBGO
GND

GND

0
GND

PF2

RX

T

%
—

X

TCAO wo4
TCAO wo3

USART — Baud rate formula example

4 * frequencymicrocontroiler

BAUD —
VALUE frequencypaya
20 000 000
4 * 3
BAUD —
BAUDVALUE ~ 1388
USART3.BAUDL = (uint8_t) 1388 - 108:

USART3.BAUDH = (uint8_t) (1388 >> 8) = 5;

RX

i

X

USART — Sending characters

1. Check if data is not currently being sent (USART’s
STATUS register).
2. Set USART’s TXDATAL register to some value to send

one byte.

RX

USART Status Register

Name: STATUS
Offset: 0x04
Reset: 0x00
Property: -

Bit 7 — RXCIF USART Receive Complete Interrupt Flag

This flag is set to ‘1’ when there are unread data in the receive buffer and cleared when the receive buffer is empty
(that is, does not contain any unread data). When the receiver is disabled the receive buffer will be flushed and,
consequently, the RXCIF bit will become ‘0’.

When interrupt-driven data reception is used, the receive complete interrupt routine must read the received data from
RXDATA in order to clear the RXCIF. If not, a new interrupt will occur directly after the return from the current
interrupt.

Bit 6 — TXCIF USART Transmit Complete Interrupt Flag

This flag is set when the entire frame in the Transmit Shift register has been shifted out, and there are no new data in
the transmit buffer (TXDATA).

This flag is automatically cleared when the transmit complete interrupt vector is executed. The flag can also be
cleared by writing a ‘1’ to its bit location.

Bit 5 —- DREIF USART Data Register Empty Flag

This flag indicates if the transmit buffer (TXDATA) is ready to receive new data. The flag is set to ‘1’ when the
transmit buffer is empty and is ‘0’ when the transmit buffer contains data to be transmitted but has not yet been
moved into the Shift register. The DREIF bit is set after a Reset to indicate that the transmitter is ready. Always write
this bit to ‘0" when writing the STATUS register.

DREIF is cleared to ‘0’ by writing TXDATAL. When interrupt-driven data transmission is used, the Data Register
Empty interrupt routine must either write new data to TXDATA in order to clear DREIF or disable the Data Register
Empty interrupt. If not, a new interrupt will occur directly after the return from the current interrupt.

Bit

Access
Reset

Transmit Data Register Low Byte

Name: TXDATAL
0x02
0x00

The Transmit Data Buffer (TXB) register will be the destination for data written to the USARTNn.TXDATAL register
location.

For 5-, 6-, or 7-bit characters the upper, unused bits will be ignored by the transmitter and set to zero by the receiver.

The transmit buffer can only be written when the DREIF flag in the USARTN.STATUS register is set. Data written to

the DATA bits when the DREIF flag is not set will be ignored by the USART transmitter. When data are written to the
transmit buffer, and the transmitter is enabled, the transmitter will load the data into the Transmit Shift register when
the Shift register is empty. The data are then transmitted on the TXD pin.

7 6 5 4 3 2 1 0

TA[7:0]
RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bits 7:0 — DATA[7:0] Transmit Data Register

USART — Sending strings

Strings in C are character arrays
terminated with a null character ("\0’)

const char* hello_string = “hello”;

\0

RX

i

X

USART

Questions?

R

X

i

X

IV ENAVAV S

X

Timers/counters Interrupts Pulse width modulation Analog to digital USART
converter

Task 1 Task 2 Task 3

Vv Vv Vv

